
Blizzard

A distributed scalable queue service

Motivation

Managing large data sets
Many concurrent clients
Request tracking

E-commerce
User support

Distributed computation
Dynamic Scalability

Goals

Fault Tolerance
Adjustable failures tolerance

Persistence
of data
of queue state

Concurrency
Scalable Performance
Order perseverance

No FIFO in current systems

Implementation

Single master to simplify design
Multiple data nodes that store queue data
Multiple concurrent clients performing enqueue/dequeue
operations
Logging and replication for durability

Implementation - Begin Enqueue

1. Client asks master for a node and ID

Implementation - Store data

2. Client stores/removes the (ID, data) pair on node

Implementation - Commit

3. Client notifies the master of successful store/remove.
4. Master adds/removes item from logical queue

Evaluation

1. Throughput
Number of clients
Cluster size

2. Persistence
Churn

3. Expected error from FIFO
Number of clients

Evaluation - Throughput

Evaluation - Durability

Conclusion

Distributed Queue is slower but:
not by much
gets better with parallelism
provides larger scale and dynamic scalability
durability from failures

and...

can provide guarantees about ordering
can account for errors on client

